Source file src/reflect/makefunc.go
1 // Copyright 2012 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // MakeFunc implementation. 6 7 package reflect 8 9 import ( 10 "internal/abi" 11 "internal/goarch" 12 "unsafe" 13 ) 14 15 // makeFuncImpl is the closure value implementing the function 16 // returned by MakeFunc. 17 // The first three words of this type must be kept in sync with 18 // methodValue and runtime.reflectMethodValue. 19 // Any changes should be reflected in all three. 20 type makeFuncImpl struct { 21 makeFuncCtxt 22 ftyp *funcType 23 fn func([]Value) []Value 24 } 25 26 // MakeFunc returns a new function of the given [Type] 27 // that wraps the function fn. When called, that new function 28 // does the following: 29 // 30 // - converts its arguments to a slice of Values. 31 // - runs results := fn(args). 32 // - returns the results as a slice of Values, one per formal result. 33 // 34 // The implementation fn can assume that the argument [Value] slice 35 // has the number and type of arguments given by typ. 36 // If typ describes a variadic function, the final Value is itself 37 // a slice representing the variadic arguments, as in the 38 // body of a variadic function. The result Value slice returned by fn 39 // must have the number and type of results given by typ. 40 // 41 // The [Value.Call] method allows the caller to invoke a typed function 42 // in terms of Values; in contrast, MakeFunc allows the caller to implement 43 // a typed function in terms of Values. 44 // 45 // The Examples section of the documentation includes an illustration 46 // of how to use MakeFunc to build a swap function for different types. 47 func MakeFunc(typ Type, fn func(args []Value) (results []Value)) Value { 48 if typ.Kind() != Func { 49 panic("reflect: call of MakeFunc with non-Func type") 50 } 51 52 t := typ.common() 53 ftyp := (*funcType)(unsafe.Pointer(t)) 54 55 code := abi.FuncPCABI0(makeFuncStub) 56 57 // makeFuncImpl contains a stack map for use by the runtime 58 _, _, abid := funcLayout(ftyp, nil) 59 60 impl := &makeFuncImpl{ 61 makeFuncCtxt: makeFuncCtxt{ 62 fn: code, 63 stack: abid.stackPtrs, 64 argLen: abid.stackCallArgsSize, 65 regPtrs: abid.inRegPtrs, 66 }, 67 ftyp: ftyp, 68 fn: fn, 69 } 70 71 return Value{t, unsafe.Pointer(impl), flag(Func)} 72 } 73 74 // makeFuncStub is an assembly function that is the code half of 75 // the function returned from MakeFunc. It expects a *callReflectFunc 76 // as its context register, and its job is to invoke callReflect(ctxt, frame) 77 // where ctxt is the context register and frame is a pointer to the first 78 // word in the passed-in argument frame. 79 func makeFuncStub() 80 81 // The first 3 words of this type must be kept in sync with 82 // makeFuncImpl and runtime.reflectMethodValue. 83 // Any changes should be reflected in all three. 84 type methodValue struct { 85 makeFuncCtxt 86 method int 87 rcvr Value 88 } 89 90 // makeMethodValue converts v from the rcvr+method index representation 91 // of a method value to an actual method func value, which is 92 // basically the receiver value with a special bit set, into a true 93 // func value - a value holding an actual func. The output is 94 // semantically equivalent to the input as far as the user of package 95 // reflect can tell, but the true func representation can be handled 96 // by code like Convert and Interface and Assign. 97 func makeMethodValue(op string, v Value) Value { 98 if v.flag&flagMethod == 0 { 99 panic("reflect: internal error: invalid use of makeMethodValue") 100 } 101 102 // Ignoring the flagMethod bit, v describes the receiver, not the method type. 103 fl := v.flag & (flagRO | flagAddr | flagIndir) 104 fl |= flag(v.typ().Kind()) 105 rcvr := Value{v.typ(), v.ptr, fl} 106 107 // v.Type returns the actual type of the method value. 108 ftyp := (*funcType)(unsafe.Pointer(v.Type().(*rtype))) 109 110 code := methodValueCallCodePtr() 111 112 // methodValue contains a stack map for use by the runtime 113 _, _, abid := funcLayout(ftyp, nil) 114 fv := &methodValue{ 115 makeFuncCtxt: makeFuncCtxt{ 116 fn: code, 117 stack: abid.stackPtrs, 118 argLen: abid.stackCallArgsSize, 119 regPtrs: abid.inRegPtrs, 120 }, 121 method: int(v.flag) >> flagMethodShift, 122 rcvr: rcvr, 123 } 124 125 // Cause panic if method is not appropriate. 126 // The panic would still happen during the call if we omit this, 127 // but we want Interface() and other operations to fail early. 128 methodReceiver(op, fv.rcvr, fv.method) 129 130 return Value{ftyp.Common(), unsafe.Pointer(fv), v.flag&flagRO | flag(Func)} 131 } 132 133 func methodValueCallCodePtr() uintptr { 134 return abi.FuncPCABI0(methodValueCall) 135 } 136 137 // methodValueCall is an assembly function that is the code half of 138 // the function returned from makeMethodValue. It expects a *methodValue 139 // as its context register, and its job is to invoke callMethod(ctxt, frame) 140 // where ctxt is the context register and frame is a pointer to the first 141 // word in the passed-in argument frame. 142 func methodValueCall() 143 144 // This structure must be kept in sync with runtime.reflectMethodValue. 145 // Any changes should be reflected in all both. 146 type makeFuncCtxt struct { 147 fn uintptr 148 stack *bitVector // ptrmap for both stack args and results 149 argLen uintptr // just args 150 regPtrs abi.IntArgRegBitmap 151 } 152 153 // moveMakeFuncArgPtrs uses ctxt.regPtrs to copy integer pointer arguments 154 // in args.Ints to args.Ptrs where the GC can see them. 155 // 156 // This is similar to what reflectcallmove does in the runtime, except 157 // that happens on the return path, whereas this happens on the call path. 158 // 159 // nosplit because pointers are being held in uintptr slots in args, so 160 // having our stack scanned now could lead to accidentally freeing 161 // memory. 162 // 163 //go:nosplit 164 func moveMakeFuncArgPtrs(ctxt *makeFuncCtxt, args *abi.RegArgs) { 165 for i, arg := range args.Ints { 166 // Avoid write barriers! Because our write barrier enqueues what 167 // was there before, we might enqueue garbage. 168 // Also avoid bounds checks, we don't have the stack space for it. 169 // (Normally the prove pass removes them, but for -N builds we 170 // use too much stack.) 171 // ptr := &args.Ptrs[i] (but cast from *unsafe.Pointer to *uintptr) 172 ptr := (*uintptr)(add(unsafe.Pointer(unsafe.SliceData(args.Ptrs[:])), uintptr(i)*goarch.PtrSize, "always in [0:IntArgRegs]")) 173 if ctxt.regPtrs.Get(i) { 174 *ptr = arg 175 } else { 176 // We *must* zero this space ourselves because it's defined in 177 // assembly code and the GC will scan these pointers. Otherwise, 178 // there will be garbage here. 179 *ptr = 0 180 } 181 } 182 } 183