// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package utf8 implements functions and constants to support text encoded in // UTF-8. It includes functions to translate between runes and UTF-8 byte sequences. // See https://en.wikipedia.org/wiki/UTF-8 package utf8 // The conditions RuneError==unicode.ReplacementChar and // MaxRune==unicode.MaxRune are verified in the tests. // Defining them locally avoids this package depending on package unicode. // Numbers fundamental to the encoding. const ( RuneError = '\uFFFD' // the "error" Rune or "Unicode replacement character" RuneSelf = 0x80 // characters below RuneSelf are represented as themselves in a single byte. MaxRune = '\U0010FFFF' // Maximum valid Unicode code point. UTFMax = 4 // maximum number of bytes of a UTF-8 encoded Unicode character. ) // Code points in the surrogate range are not valid for UTF-8. const ( surrogateMin = 0xD800 surrogateMax = 0xDFFF ) const ( t1 = 0b00000000 tx = 0b10000000 t2 = 0b11000000 t3 = 0b11100000 t4 = 0b11110000 t5 = 0b11111000 maskx = 0b00111111 mask2 = 0b00011111 mask3 = 0b00001111 mask4 = 0b00000111 rune1Max = 1<<7 - 1 rune2Max = 1<<11 - 1 rune3Max = 1<<16 - 1 // The default lowest and highest continuation byte. locb = 0b10000000 hicb = 0b10111111 // These names of these constants are chosen to give nice alignment in the // table below. The first nibble is an index into acceptRanges or F for // special one-byte cases. The second nibble is the Rune length or the // Status for the special one-byte case. xx = 0xF1 // invalid: size 1 as = 0xF0 // ASCII: size 1 s1 = 0x02 // accept 0, size 2 s2 = 0x13 // accept 1, size 3 s3 = 0x03 // accept 0, size 3 s4 = 0x23 // accept 2, size 3 s5 = 0x34 // accept 3, size 4 s6 = 0x04 // accept 0, size 4 s7 = 0x44 // accept 4, size 4 ) const ( runeErrorByte0 = t3 | (RuneError >> 12) runeErrorByte1 = tx | (RuneError>>6)&maskx runeErrorByte2 = tx | RuneError&maskx ) // first is information about the first byte in a UTF-8 sequence. var first = [256]uint8{ // 1 2 3 4 5 6 7 8 9 A B C D E F as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x00-0x0F as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x10-0x1F as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x20-0x2F as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x30-0x3F as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x40-0x4F as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x50-0x5F as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x60-0x6F as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, as, // 0x70-0x7F // 1 2 3 4 5 6 7 8 9 A B C D E F xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0x80-0x8F xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0x90-0x9F xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0xA0-0xAF xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0xB0-0xBF xx, xx, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, // 0xC0-0xCF s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, s1, // 0xD0-0xDF s2, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, s4, s3, s3, // 0xE0-0xEF s5, s6, s6, s6, s7, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, xx, // 0xF0-0xFF } // acceptRange gives the range of valid values for the second byte in a UTF-8 // sequence. type acceptRange struct { lo uint8 // lowest value for second byte. hi uint8 // highest value for second byte. } // acceptRanges has size 16 to avoid bounds checks in the code that uses it. var acceptRanges = [16]acceptRange{ 0: {locb, hicb}, 1: {0xA0, hicb}, 2: {locb, 0x9F}, 3: {0x90, hicb}, 4: {locb, 0x8F}, } // FullRune reports whether the bytes in p begin with a full UTF-8 encoding of a rune. // An invalid encoding is considered a full Rune since it will convert as a width-1 error rune. func FullRune(p []byte) bool { n := len(p) if n == 0 { return false } x := first[p[0]] if n >= int(x&7) { return true // ASCII, invalid or valid. } // Must be short or invalid. accept := acceptRanges[x>>4] if n > 1 && (p[1] < accept.lo || accept.hi < p[1]) { return true } else if n > 2 && (p[2] < locb || hicb < p[2]) { return true } return false } // FullRuneInString is like FullRune but its input is a string. func FullRuneInString(s string) bool { n := len(s) if n == 0 { return false } x := first[s[0]] if n >= int(x&7) { return true // ASCII, invalid, or valid. } // Must be short or invalid. accept := acceptRanges[x>>4] if n > 1 && (s[1] < accept.lo || accept.hi < s[1]) { return true } else if n > 2 && (s[2] < locb || hicb < s[2]) { return true } return false } // DecodeRune unpacks the first UTF-8 encoding in p and returns the rune and // its width in bytes. If p is empty it returns ([RuneError], 0). Otherwise, if // the encoding is invalid, it returns (RuneError, 1). Both are impossible // results for correct, non-empty UTF-8. // // An encoding is invalid if it is incorrect UTF-8, encodes a rune that is // out of range, or is not the shortest possible UTF-8 encoding for the // value. No other validation is performed. func DecodeRune(p []byte) (r rune, size int) { n := len(p) if n < 1 { return RuneError, 0 } p0 := p[0] x := first[p0] if x >= as { // The following code simulates an additional check for x == xx and // handling the ASCII and invalid cases accordingly. This mask-and-or // approach prevents an additional branch. mask := rune(x) << 31 >> 31 // Create 0x0000 or 0xFFFF. return rune(p[0])&^mask | RuneError&mask, 1 } sz := int(x & 7) accept := acceptRanges[x>>4] if n < sz { return RuneError, 1 } b1 := p[1] if b1 < accept.lo || accept.hi < b1 { return RuneError, 1 } if sz <= 2 { // <= instead of == to help the compiler eliminate some bounds checks return rune(p0&mask2)<<6 | rune(b1&maskx), 2 } b2 := p[2] if b2 < locb || hicb < b2 { return RuneError, 1 } if sz <= 3 { return rune(p0&mask3)<<12 | rune(b1&maskx)<<6 | rune(b2&maskx), 3 } b3 := p[3] if b3 < locb || hicb < b3 { return RuneError, 1 } return rune(p0&mask4)<<18 | rune(b1&maskx)<<12 | rune(b2&maskx)<<6 | rune(b3&maskx), 4 } // DecodeRuneInString is like [DecodeRune] but its input is a string. If s is // empty it returns ([RuneError], 0). Otherwise, if the encoding is invalid, it // returns (RuneError, 1). Both are impossible results for correct, non-empty // UTF-8. // // An encoding is invalid if it is incorrect UTF-8, encodes a rune that is // out of range, or is not the shortest possible UTF-8 encoding for the // value. No other validation is performed. func DecodeRuneInString(s string) (r rune, size int) { n := len(s) if n < 1 { return RuneError, 0 } s0 := s[0] x := first[s0] if x >= as { // The following code simulates an additional check for x == xx and // handling the ASCII and invalid cases accordingly. This mask-and-or // approach prevents an additional branch. mask := rune(x) << 31 >> 31 // Create 0x0000 or 0xFFFF. return rune(s[0])&^mask | RuneError&mask, 1 } sz := int(x & 7) accept := acceptRanges[x>>4] if n < sz { return RuneError, 1 } s1 := s[1] if s1 < accept.lo || accept.hi < s1 { return RuneError, 1 } if sz <= 2 { // <= instead of == to help the compiler eliminate some bounds checks return rune(s0&mask2)<<6 | rune(s1&maskx), 2 } s2 := s[2] if s2 < locb || hicb < s2 { return RuneError, 1 } if sz <= 3 { return rune(s0&mask3)<<12 | rune(s1&maskx)<<6 | rune(s2&maskx), 3 } s3 := s[3] if s3 < locb || hicb < s3 { return RuneError, 1 } return rune(s0&mask4)<<18 | rune(s1&maskx)<<12 | rune(s2&maskx)<<6 | rune(s3&maskx), 4 } // DecodeLastRune unpacks the last UTF-8 encoding in p and returns the rune and // its width in bytes. If p is empty it returns ([RuneError], 0). Otherwise, if // the encoding is invalid, it returns (RuneError, 1). Both are impossible // results for correct, non-empty UTF-8. // // An encoding is invalid if it is incorrect UTF-8, encodes a rune that is // out of range, or is not the shortest possible UTF-8 encoding for the // value. No other validation is performed. func DecodeLastRune(p []byte) (r rune, size int) { end := len(p) if end == 0 { return RuneError, 0 } start := end - 1 r = rune(p[start]) if r < RuneSelf { return r, 1 } // guard against O(n^2) behavior when traversing // backwards through strings with long sequences of // invalid UTF-8. lim := max(end-UTFMax, 0) for start--; start >= lim; start-- { if RuneStart(p[start]) { break } } if start < 0 { start = 0 } r, size = DecodeRune(p[start:end]) if start+size != end { return RuneError, 1 } return r, size } // DecodeLastRuneInString is like [DecodeLastRune] but its input is a string. If // s is empty it returns ([RuneError], 0). Otherwise, if the encoding is invalid, // it returns (RuneError, 1). Both are impossible results for correct, // non-empty UTF-8. // // An encoding is invalid if it is incorrect UTF-8, encodes a rune that is // out of range, or is not the shortest possible UTF-8 encoding for the // value. No other validation is performed. func DecodeLastRuneInString(s string) (r rune, size int) { end := len(s) if end == 0 { return RuneError, 0 } start := end - 1 r = rune(s[start]) if r < RuneSelf { return r, 1 } // guard against O(n^2) behavior when traversing // backwards through strings with long sequences of // invalid UTF-8. lim := max(end-UTFMax, 0) for start--; start >= lim; start-- { if RuneStart(s[start]) { break } } if start < 0 { start = 0 } r, size = DecodeRuneInString(s[start:end]) if start+size != end { return RuneError, 1 } return r, size } // RuneLen returns the number of bytes in the UTF-8 encoding of the rune. // It returns -1 if the rune is not a valid value to encode in UTF-8. func RuneLen(r rune) int { switch { case r < 0: return -1 case r <= rune1Max: return 1 case r <= rune2Max: return 2 case surrogateMin <= r && r <= surrogateMax: return -1 case r <= rune3Max: return 3 case r <= MaxRune: return 4 } return -1 } // EncodeRune writes into p (which must be large enough) the UTF-8 encoding of the rune. // If the rune is out of range, it writes the encoding of [RuneError]. // It returns the number of bytes written. func EncodeRune(p []byte, r rune) int { // This function is inlineable for fast handling of ASCII. if uint32(r) <= rune1Max { p[0] = byte(r) return 1 } return encodeRuneNonASCII(p, r) } func encodeRuneNonASCII(p []byte, r rune) int { // Negative values are erroneous. Making it unsigned addresses the problem. switch i := uint32(r); { case i <= rune2Max: _ = p[1] // eliminate bounds checks p[0] = t2 | byte(r>>6) p[1] = tx | byte(r)&maskx return 2 case i < surrogateMin, surrogateMax < i && i <= rune3Max: _ = p[2] // eliminate bounds checks p[0] = t3 | byte(r>>12) p[1] = tx | byte(r>>6)&maskx p[2] = tx | byte(r)&maskx return 3 case i > rune3Max && i <= MaxRune: _ = p[3] // eliminate bounds checks p[0] = t4 | byte(r>>18) p[1] = tx | byte(r>>12)&maskx p[2] = tx | byte(r>>6)&maskx p[3] = tx | byte(r)&maskx return 4 default: _ = p[2] // eliminate bounds checks p[0] = runeErrorByte0 p[1] = runeErrorByte1 p[2] = runeErrorByte2 return 3 } } // AppendRune appends the UTF-8 encoding of r to the end of p and // returns the extended buffer. If the rune is out of range, // it appends the encoding of [RuneError]. func AppendRune(p []byte, r rune) []byte { // This function is inlineable for fast handling of ASCII. if uint32(r) <= rune1Max { return append(p, byte(r)) } return appendRuneNonASCII(p, r) } func appendRuneNonASCII(p []byte, r rune) []byte { // Negative values are erroneous. Making it unsigned addresses the problem. switch i := uint32(r); { case i <= rune2Max: return append(p, t2|byte(r>>6), tx|byte(r)&maskx) case i < surrogateMin, surrogateMax < i && i <= rune3Max: return append(p, t3|byte(r>>12), tx|byte(r>>6)&maskx, tx|byte(r)&maskx) case i > rune3Max && i <= MaxRune: return append(p, t4|byte(r>>18), tx|byte(r>>12)&maskx, tx|byte(r>>6)&maskx, tx|byte(r)&maskx) default: return append(p, runeErrorByte0, runeErrorByte1, runeErrorByte2) } } // RuneCount returns the number of runes in p. Erroneous and short // encodings are treated as single runes of width 1 byte. func RuneCount(p []byte) int { np := len(p) var n int for ; n < np; n++ { if c := p[n]; c >= RuneSelf { // non-ASCII slow path return n + RuneCountInString(string(p[n:])) } } return n } // RuneCountInString is like [RuneCount] but its input is a string. func RuneCountInString(s string) (n int) { for range s { n++ } return n } // RuneStart reports whether the byte could be the first byte of an encoded, // possibly invalid rune. Second and subsequent bytes always have the top two // bits set to 10. func RuneStart(b byte) bool { return b&0xC0 != 0x80 } const ptrSize = 4 << (^uintptr(0) >> 63) const hiBits = 0x8080808080808080 >> (64 - 8*ptrSize) func word[T string | []byte](s T) uintptr { if ptrSize == 4 { return uintptr(s[0]) | uintptr(s[1])<<8 | uintptr(s[2])<<16 | uintptr(s[3])<<24 } return uintptr(uint64(s[0]) | uint64(s[1])<<8 | uint64(s[2])<<16 | uint64(s[3])<<24 | uint64(s[4])<<32 | uint64(s[5])<<40 | uint64(s[6])<<48 | uint64(s[7])<<56) } // Valid reports whether p consists entirely of valid UTF-8-encoded runes. func Valid(p []byte) bool { // This optimization avoids the need to recompute the capacity // when generating code for slicing p, bringing it to parity with // ValidString, which was 20% faster on long ASCII strings. p = p[:len(p):len(p)] for len(p) > 0 { p0 := p[0] if p0 < RuneSelf { p = p[1:] // If there's one ASCII byte, there are probably more. // Advance quickly through ASCII-only data. // Note: using > instead of >= here is intentional. That avoids // needing pointing-past-the-end fixup on the slice operations. if len(p) > ptrSize && word(p)&hiBits == 0 { p = p[ptrSize:] if len(p) > 2*ptrSize && (word(p)|word(p[ptrSize:]))&hiBits == 0 { p = p[2*ptrSize:] for len(p) > 4*ptrSize && ((word(p)|word(p[ptrSize:]))|(word(p[2*ptrSize:])|word(p[3*ptrSize:])))&hiBits == 0 { p = p[4*ptrSize:] } } } continue } x := first[p0] size := int(x & 7) accept := acceptRanges[x>>4] switch size { case 2: if len(p) < 2 || p[1] < accept.lo || accept.hi < p[1] { return false } p = p[2:] case 3: if len(p) < 3 || p[1] < accept.lo || accept.hi < p[1] || p[2] < locb || hicb < p[2] { return false } p = p[3:] case 4: if len(p) < 4 || p[1] < accept.lo || accept.hi < p[1] || p[2] < locb || hicb < p[2] || p[3] < locb || hicb < p[3] { return false } p = p[4:] default: return false // illegal starter byte } } return true } // ValidString reports whether s consists entirely of valid UTF-8-encoded runes. func ValidString(s string) bool { for len(s) > 0 { s0 := s[0] if s0 < RuneSelf { s = s[1:] // If there's one ASCII byte, there are probably more. // Advance quickly through ASCII-only data. // Note: using > instead of >= here is intentional. That avoids // needing pointing-past-the-end fixup on the slice operations. if len(s) > ptrSize && word(s)&hiBits == 0 { s = s[ptrSize:] if len(s) > 2*ptrSize && (word(s)|word(s[ptrSize:]))&hiBits == 0 { s = s[2*ptrSize:] for len(s) > 4*ptrSize && ((word(s)|word(s[ptrSize:]))|(word(s[2*ptrSize:])|word(s[3*ptrSize:])))&hiBits == 0 { s = s[4*ptrSize:] } } } continue } x := first[s0] size := int(x & 7) accept := acceptRanges[x>>4] switch size { case 2: if len(s) < 2 || s[1] < accept.lo || accept.hi < s[1] { return false } s = s[2:] case 3: if len(s) < 3 || s[1] < accept.lo || accept.hi < s[1] || s[2] < locb || hicb < s[2] { return false } s = s[3:] case 4: if len(s) < 4 || s[1] < accept.lo || accept.hi < s[1] || s[2] < locb || hicb < s[2] || s[3] < locb || hicb < s[3] { return false } s = s[4:] default: return false // illegal starter byte } } return true } // ValidRune reports whether r can be legally encoded as UTF-8. // Code points that are out of range or a surrogate half are illegal. func ValidRune(r rune) bool { switch { case 0 <= r && r < surrogateMin: return true case surrogateMax < r && r <= MaxRune: return true } return false }